Evolving Decision Rules to Predict Investment Opportunities

نویسندگان

  • Alma Lilia Garcia-Almanza
  • Edward P. K. Tsang
چکیده

This paper is motivated by the interest in finding significant movements in financial stock prices. However, when the number of profitable opportunities is scarce, the prediction of these cases is difficult. In a previous work, we have introduced evolving decision rules (EDR) to detect financial opportunities. The objective of EDR is to classify the minority class (positive cases) in imbalanced environments. EDR provides a range of classifications to find the best balance between not making mistakes and not missing opportunities. The goals of this paper are: 1) to show that EDR produces a range of solutions to suit the investor′s preferences and 2) to analyze the factors that benefit the performance of EDR. A series of experiments was performed. EDR was tested using a data set from the London Financial Market. To analyze the EDR behaviour, another experiment was carried out using three artificial data sets, whose solutions have different levels of complexity. Finally, an illustrative example was provided to show how a bigger collection of rules is able to classify more positive cases in imbalanced data sets. Experimental results show that: 1) EDR offers a range of solutions to fit the risk guidelines of different types of investors, and 2) a bigger collection of rules is able to classify more positive cases in imbalanced environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ranking and Managing Stock in the Stock Market Using Fundamental and Technical Analyses

The stock selection problem is one of the major issues in the investment industry, which is mainly solved by analyzing financial ratios. However, considering the complexity and imprecise patterns of the stock market, obvious and easy-to-understand investment rules, based on fundamental analysis, are difficult to obtain. Fundamental and technical analyses are two common methods for predicting th...

متن کامل

Ranking and Managing Stock in the Stock Market Using Fundamental and Technical Analyses

The stock selection problem is one of the major issues in the investment industry, which is mainly solved by analyzing financial ratios. However, considering the complexity and imprecise patterns of the stock market, obvious and easy-to-understand investment rules, based on fundamental analysis, are difficult to obtain. Fundamental and technical analyses are two common methods for predicting th...

متن کامل

Uncertainty and Option Value in Land Allocation Problems

In this paper we are concerned with modelling techniques for evaluating development and conservation opportunities when dealing with investment decisions involving environmental resources management. In this context, highly characterized by both environmental and economic uncertainty, we emphasize the importance of capturing the flexibility of different investment strategies. In particular, we ...

متن کامل

Extracting Human-readable Knowledge Rules in Complex Time-evolving Environments

A production rule system is a reasoning system that uses rules for knowledge representation. Manual rule acquisition requires a great amount of effort and time from humans. In this paper, we present a data-driven technique for autonomously extracting human-readable rules from complex, time-evolving environments that makes rule acquisition for production rule systems efficient. Complex, time-evo...

متن کامل

The Repository Method for Chance Discovery in Financial Forecasting

The aim of this work is to forecast future opportunities in financial stock markets, in particular, we focus our attention on situations where positive instances are rare, which falls into the domain of Chance Discovery. Machine learning classifiers extend the past experiences into the future. However the imbalance between positive and negative cases poses a serious challenge to machine learnin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007